

Building Network-Wide AI by Data Flow Composition

Diego R. López Telefónica

The Autonomous Network Aspiration

- Autonomous Networks are the natural conclusion of curren automation efforts
 - o After automatic and autonomic
- Based on a definition of policies and goals
 - o Network intents
 - Policy enforcement and propagation
- Detection and action
 - Dynamic identification
 - o Adaptable response
- Extending the well-known closed-loop approaches
 - Using AI to derive further insights and improve policy mapping

2

AND

KLAATU

BARADA

NIKTO

A Brave New World for Al

- Networks are critical and naturally distributed systems
 - $\circ~$ A distributed AI for managing them
- Beware the network differential facts
 - Topology (and geometry!) awareness
 - The conservation principle
 - The laser effects
 - o Openness
 - Integrity and auditability
 - o Isolation
- Multi-domain and (close to) real-time
 - o Depth: local vs holistic
 - Breadth: consider network segments
 - Mapping on the network management structure

The Nervous System Paradigm

- Combine distributed architectures and holistic approaches
- Local loops
 - Detailed analysis
 - Fast response
 - Dynamic deployment
- Central loop(s)
 - o Cumulated analysis
 - o Integral view
 - o Explicability
 - Local loop orchestration
- All using a common impulse for all kind of interactions
 - o Central elements receive and process aggregate information
 - \circ $\,$ A common data infrastructure for forwarding and aggregation $\,$

The Ratiocination Loop

- The dialectic way
 - Thesis: Translate intent into action
 - Understanding intent statements
 - Mapping onto technologies
 - Antithesis: Support environment constraints
 - Policies provided by network management
 - The archetypal SLA enforcement
 - Synthesis: Conflict resolution
 - Among action requests
 - And with management constraints

- Audit track and intelligibility
 - The who, the what, the when
 - \circ And the why
- And security
 - \circ Deal with adversarial Als
 - And consider circuit breakers

Building the Nervous Data Infrastructure

- Rely on aggregation nodes
 - o Sources feed data
 - Consumers receive them
 - Aggregators map and integrate
- Based on metadata
 - Dynamic composition
 - Transport protocol agnostic
 - Telemetry data models
 - Knowledge ontologies
- Compositional patterns
 - o Any element can play any role
 - o AI / ML supported anywhere

The Core Element: 5Growth Data Aggregator

Autonomous Security at the ICT Supply Chain

- Data consumers and processors
 - Intent-based Orchestrator and Dashboard
 - Assurance and Dynamic Configuration
 - o Trust and Incident Management
- Several potential layers of data aggregators
 - Security Data Space Infrastructure
 - o Secure infrastructure Abstraction
 - Intent-Based Resilience
 Orchestrator

Replication in the Digital Era

- Digital twins are digital replications of physical entities that enable data to be seamlessly transmitted between the physical and virtual worlds
 - Facilitate the means to monitor, understand, and optimize the functions of the replicated entities
- Originally applied in manufacturing industry processes and machinery
- Main elements
 - Sensors and actuators, so that digital twins can replicate the real twin behavior
 - Al, in order to make fast and intelligent decisions on behalf of their real twin.
 - Communication, to interact in near real time with the environment, real twins, and/or other digital twins
 - Representation, from a 3D avatar to a graphical dashboard, depending on the application domain
 - \circ $\;$ Trust, for real twins to trust their digital twin
 - o Privacy and security, including the resolution of regulatory and political issues

The Mouseworld, Synthetic Traffic and beyond

Originally conceived as an environment for security experimentation

- o Later applied to AI/ML training and validation
- o Suitable to evolve into a network digital twin
- Able to incorporate applications, functions and topologies
 - Virtualized network functions
 - Emulators of physical network functions
 - Traffic traces (network data) to be injected.
 - Using a model-based approach
 - Simple reconfiguration
 - Differential analysis of alternate scenarios
- Repeatable and controlled conditions and variants
 - o SDN/NFV
 - Data infrastructure orchestration

Making the Autonomous Closed-Loop Feasible

- Signal flows in networked architectures
 - o Matching controllers to plants
- The nature of distribution
 - Aggregation of knowledge
 - o Accumulation of decisions
 - o Cooperative vs independent vs selfish
 - Fixed vs mobile vs roaming
- Communication issues
 - o Metadata distribution
 - Specific knowledge and policy exchanges
 - The reuse of stream mechanisms
 - Aggregator orchestration
- The application to the other kind of signals
 - The issue of an Action Infrastructure

